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HOROCYCLE FLOWS ARE 
LOOSELY BERNOULLI 

BY 

M A R I N A  R A T N E R *  

ABSTRACT 

It is proved that horocycle flows associated with transitive C2-Anosov flows are 
loosely Bernoulli with respect to their unique ergodic measures. 

Let T, be an Anosov flow of class C 2 on a compact  smooth n-dimensional  

Riemann manifold M and W s, W u, W ss, W ~ be the stable, unstable, strong 

stable, strong unstable foliations of 7", (see [1,5]). Suppose that W uu is orientable 

and one-dimensional.  Then the unit tangent bundle of W u~ defines a continuous 

flow H, on M which is called the horocycle flow associated with T,. The orbits of 

H, are precisely the leaves of W uu. 

When" T, is the geodesic flow on the space M of unit tangent vectors of a 

compact  surface of constant negative curvature then H, is the well known 

classical horocycle flow ([2], [10], [11], [20]). Both T, and H, preserve the 

Riemannian volume on M, are ergodic, 

(1) T, .Hs=H,, , .7" ,  for al ls ,  t E R  and s o m e A > l ,  

and every orbit of H, is dense in M. H. Furstenberg [9] has proved that H, is 

uniquely ergodic. 

It turned out that similar propert ies are enjoyed by any transitive (i.e., leaves 

of W uu W"  are dense in M)  Anosov T, of class C 2. More precisely, it has been 

proved in [6], [16], [17], [19] that in this case there is a continuous reparametr iza-  

tion ~b : M x R ---> R** on orbits of H, s.t. qb preserves orientation and the flow 

*Partially supported by the Sloan Foundation and NSF Grant MCS74-19388. 
**~0 might be not absolutely continuous with respect to t. In this case it is not a legitimate 

time-change on orbits of H,. 
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h, : h,x = H,tx.ox satisfies the uniform expanding condition (1). R. Bowen and B. 

Marcus [6], [17] have proved that h, (and therefore H, since ~b is continuous) is 

uniquely ergodic. The unique ergodic measure/z of h, is positive on open sets, 

and is also preserved by T,. Actually, it is the measure of maximal entropy for T, 

([6], [17]). B. Marcus [18] proved that (h,,/z) is mixing of all degrees (see [28]). 

h, and H, have zero entropy.* This property is common for all measurable 

flows having the same orbits and time-orientation. In other words, zero entropy 

is invariant under Kakutani equivalence (see [8], [12], [13], [21], [30]). 

Recently, J. Feldman [8] and A. B. Katok [13] have introduced independently 

a new property, loosely Bernoulli (LB) by J. Feldman, which is also invariant 

under Kakutani equivalence. A zero entropy ergodic flow S, is LB if after a 

suitable measurable time-change it becomes isomorphic to an irrational flow on 

2-torus. Equivalently, S, is LB iff it is isomorphic to a special flow built over an 

irrational rotation of the circle with a positive integrable function f. It follows 

from [7], [23] that f can be taken differentiable on the circle, but the derivative of 

f might be unbounded. 

We prove the following 

THEOREM 1. Let T, be a transitive Anosov flow of class C 2 on a compact M 

with W uu orientable and one-dimensional. Then the associated horocycle flow H, is 

LB  with respect to its unique ergodic measure. 

COROLLARY 1. Let T, be the geodesic flow of the unit tangent bundle of a 

compact manifold of negative curvature with W uu as in Theorem 1. Then the 

associated horocycle flow is LB  with respect to its unique ergodic measure. 

A Borel probability measure/z on M is called natural if d/z = dv • dt where 

dt is the Lebesque measure on orbits of h, and v is a measure on leaves of W ~ s.t. 

v is positive on open sets and for each x ~ M, r > 0 there is a compact A ~ x, 

A = I n t A C  WS(x), diamA < r s.t. the v-measure of the boundary OA of A is 
zero. 

It follows from [6] that the unique ergodic measure of h, mentioned above is 
natural. 

One can see that actually our proof of Theorem 1 works for a more general 

Theorem where compactness M is not assumed. 

THEOREM 2. Let M be a countable union of compact sets and T, be an Anosov 

*This follows from the LB-property we prove below. 
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flow on M. Let W uu be orientable and one-dimensional. Let h, be a continuous flow 

on M whose orbits are leaves of W uu. Assume that (1) I", �9 h, = hA,,. T, for all 

s, t E R and some A > 1 ; (2) both T, and h, preserve a natural measure I~ on M; (3) 

(h,, tz) is ergodic. Then (h,,/z) is LB. 

Theorem 2 implies 

THEOREM 3. Let 7", be the geodesic flow on the unit tangent bundle M of a 

manifold X of constant negative curvature. Let vol X < o0. Then the horocycle flow 

H, on M is L B  with respect to the invariant Riemannian volume (vol) on M. 

We remark that M in the Theorem 3 is not necessarily compact. It has been 

proved in [2], [11], [20] that if vol X < ~ both (T,, vol) and (H,, vol) are ergodic. 

(1) shows that h, possesses the following property: 

(2) For any u, v > 0, hu and h~ are isomorphic. 

It follows from our Theorems that 

COROLLARY 2. Any  LB  ergodic flow with zero entropy can be time-changed to 

possess (2), to become mixing of all degrees [18] and to have denumerably infinite 

Lebesgue spectrum [24]. 

QUESTION. Can any zero entropy ergodic flow be time changed to possess (2), 

to become mixing of all degrees, to have denumerably infinite Lebesgue 

spectrum? 

We mention that D. Ornstein and M. Smorodinsky [22] have proved that any 

positive entropy ergodic flow can be time changed to become a K-flow. 

B. Weiss [30] proved that a zero-entropy ergodic flow S, is LB iff S,o is LB for 

at least one particular to (then for all t) (see D. Rudolph [26] for positive entropy 

case). Therefore h, is LB. 

QUESTION. Are h, • h, and hi • hi LB? 

We remark that Kushnirenko [15] showed for constant negative curvature 

case that h~ • h~ is not isomorphic to h, while D. Ornstein and D. Rudolph [27] 

gave an example of an LB T s.t. T •  T is not LB. 

I am grateful to R. Bowen, H. Furstenberg, D. Kazhdan, B. Marcus, B. Weiss 

and J. Wolf for useful discussions on various aspects of the problem. I am 

especially grateful to B. Weiss for his valuable suggestions which helped me to 

complete the paper in its final form. 
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1. The  f - m e t r i c  (see [21], [30]) 

We  are going to p rove  that  (h, , /~) is LB,  where  h, satisfies (1) and 

dlz = du • dt is h , - invar iant  na tura l  measure .  Some t imes  for  simplicity we will 

use the unique ergodici ty of h,; it is not essential  and enough  to have  just 

ergodici ty (we care about  T h e o r e m s  2, 3 where  h, is not necessari ly uniquely 

ergodic).  

Let  w , w ' E { 1 , 2 , . . . , a } " .  Then  f , ( w , w ' ) =  1 - k / n  where  k is the maximal  

integer  for  which we can find subsequences  il < i2 < �9 �9 �9 < ik, j~ < j~ < �9 - �9 < jk 

with w(ir) = w'(j,), 1 <= r <= k. 

Let T be a ze ro -en t ropy  m.p.t ,  in a probabi l i ty  space (X, /~)  and let 

P - - { P z , ' "  " ,P,} be  a part i t ion of X. If x E Pj then j is the P - n a m e  of x E X. 

D e n o t e  w , ( x ) =  { x , . .  . ,x ,}  where  x, is the T - '  P - n a m e  of x. 

P is called an LB-par t i t ion  if given e > 0  there  is N > 0  and a set Y C X, 

/z (Y)  > 1 - e s.t. if n => N and x, y E Y then f ,  (w,  (x),  w, (y))  < ~. We  say that  

w,(x )  and w , ( y )  or  {x, T x , . . . ,  T"x} and {y, T y , . . . ,  T"y} are e - P - m a t c h a b l e .  

An ergodic T is LB if it has an LB genera tor .  

2. u-cylindric partitions 

Let W be a foliation in M and A C M. We  write A C W if A is a subset  of a 

leaf of W. 

DEFINITION 1. TWO sets A , B  C W s are called u- i somorphic  (A L B )  com- 

pare  with the canonical  i somorph i sm in [3], [4], [25], [29]) if there  is a con t inuous  

g: A • I---~M ( I  = [0, 11) s.t. (1) g ( x , I ) C  W"", x C A ,  (2) g (x ,0 )  = xg(x ,  1 ) E B  

and the m a p  g: A ~ B g(x)  = g(x, 1) is a h o m e o m o r p h i s m .  The  set g(A  x I )=  

P is called a u-cyl inder  with faces A, B. If the posi t ive direct ion on orbi ts  of  h, 

goes f rom A to B we write A = A ~ ( P )  and B =A2(P).  g (x , I )  and g ( y , / ) ,  

x, y E A are called s - i somorphic  (g(x, I) ~ g(y,  I)) .  

We  deno te  r/e the part i t ion of P into sets u- i somorphic  to A1 = A~(P) and 

r = {g(x, I )  C P, x E A~} the part i t ion of P into s - i somorphic  intervals of orbi ts  

of h,. 

Hence fo r th  we suppose  that  A~ = I n t A z  C W" is compac t  and the u - m e a s u r e  

of the bounda ry  aA1 of A) is zero.  

Let  a = {P~ , . . - ,P , , }  be  a par t i t ion of M into u-cylinders (we say ot is a 

u-part i t ion).  

We may get such an a by the following p rocedure  (see [3], [4], [25], [29]). Let  
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or = {Q~, . - - ,  Qq} be a cove r  of  M by small u-cylinders.  Suppose  that  Ind  Q~ VI 

I n t Q j / O ,  i ~ j. Then  there  are A, ~ rlo ,, Aj E ~lo, s.t. B,j = A, N Aj = 
Int(A~ A A j ) C  W '  has n o n - e m p t y  interior.  Using the u - i somorph i sm we may 

par t i t ion Q~ U Qj into finite m a n y  u-cylinders whose faces are u - i somorphic  

images  of B~j and of A~ Z B~i, Aj - B~j. The  boundar ies  of  the faces are con ta ined  

in a union of some  u- i somorphic  images  of  8A~(Q~) and 8A~(Qj). v is zero  on 

OAI(Q,) and &A~(Qj). Since /z is h , - invar iant  and d/z = dv x dt v is invar iant  

under  the u - i somorphism.  T h e r e f o r e  the v - m e a s u r e  of  the boundar ies  is 0. We  

get a finite u-par t i t ion a applying this process  inductively to the cover  o'. 

D e n o t e  ~:~ = {C E t~p, P E a}  and 7/~ = {A ~ r/•., P E a}.  

Let  /3 = {AI(P) :  P ~ a} and X = U/3  be the se t - theoret ic  union of a toms  of 

/3. For  x E X we deno te  r the first intersect ion of the orbit  {h,(x),  t > 0 }  with 

X and F(x)  the length of [x, ~ (x ) ]  on the orbit.  Actual ly  [x, ~b(x)] E s~,~. (h,,iz) is 

a special flow (qJ, F )  built ove r  (X, qJ, v) with F, where  v is a +- invar ian t  ergodic 

Borel  measu re  on X s.t. d/z = dv • d t /F where  P = f Fdv. We say that  (X, ~/,, v) 

is a cross-sect ion of (h,, tz). By A b r a m o v  formula  $ has zero en t ropy .  (h,, it) is 

LB iff (X, qJ, v) is LB (see [8], [13], [30]). 

We  will p rove  that  /3 is LB for  (~b, v). 

For  u E M we deno te  by L(u)  the orbit  interval  [u,h,u], t > 0 .  Since a is a 

u-part i t ion,  L(u)  can be uniquely  r ep resen ted  as a disjoint  union of intervals  
u i ( u ) ~  , . ,  

,=o.h(u), J~<J~§ where  Jo(u), J , , ) ( u ) C C E ~  and J ~ ( u ) E ~  for  i =  

1 , . . . , i ( u ) -  1. If J~ (u )C  s%.. for  some  P,, E a we say that  m is the a - n a m e  of 

J~(u). If J ~ ( u ) =  [u,,u,+~] then u, E X  for  i = 1 , . - . , i ( u ) .  

DZFINmON 2. For  u, v E M ,  I,(u) and L(v)  are called e - a - m a t c h a b l e  if 

there  are  subsequences  l < = i , < i 2 < . . . < i k - < i ( u ) - l ,  l < - j ~ < j 2 < . . . < j k < =  

i ( v ) -  1 s.t. J,,(u) and Jj~(v) have  equal  a - n a m e s ,  p = 1, k, and the measures  

l(U~=~J~,(u))/t, l(U~=~Jj,(v))/t are at least 1 - e .  

LEMMA 1. Suppose that given 6 > 0 there is to = to(g) s.t. if t >= to then for any 

u, v E M L(u)  and I,(v) are g-a-matchable. Then the partition /3 is LB  for 

(x,r v). 

PROOF. We  consider  the special flow (h,, i t )  = (~b, F, v). Le t  e > 0 and 6 = 

6 ( e )  > 0 be  chosen later. Since ~b is ergodic  there  is no = no(g) and a set Xo C X, 

v(Xo)> 1 - 6 s.t. if x E Xo, n -> no then 

F ( ~ ' x ) - P  < 6  or  
i ~ 0  

I I (3) ~--~o F ( ~ b ' x ) -  nF  < n6. 
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Let No = No(6) = max{no(6), to(6)/F}. We claim that if n > No then w, (x) and 

w, (y)  are K6-/J-matchable for any x ,y  EX0,  where K = ( 3 + 2 F ) / a  and a = 

infxF(x). 
Consider the orbit intervals [x, t0"x] and [y, to"y], l[x, to"x] = E?=7 F(t0'x) and 

/[y, ~O"y] = E~'_yd F(to~y). Let t = nF > to(6). By assumption I,(x) a n d / , ( y )  are 6- 

a-matchable.  By (3) we have 

I t -  l[x, to"x]l < n6, 
(4) 

I J i (x ) t  Let I,(x)=,.,~=o~,(x), 
0 , . . . , i ( x ) -  1 and by (4) 

[t - / [y ,  to"y]l < n6. 

J,(x)=[x,_,x,] ,  xo=x. 

(5) 

All points x~@X, i =  

In - i ( x ) l  < n6/a, 

In - i ( y ) l  < n6/a. 

a , ( x )={J , ( x ) : i=O,"  . , i(x)} and y,(x)={J~,(x)~ a,(x) :  J~,(x)is 6-a -  Let 

matched with some Jip(y)~ a,(y) in a 6-a-match  between L(x) and L(y)}. So 

J~p(x) = [x,p-z,x~p] and Jjp(y)= [Yjp-1, Yi,] have equal a -names  and then x~,-1 and 

yj_~ have equal /3-names. So we match x,,_l with y~_l in the sequences 

{Xo = x, x~,-.- ,  x~x)} and {Y0 = y, Y~,'" ", Y,~y)} where in general i (x )#  i(y).  

The total length of intervals of a, (x) which are not in y, (x) is at most t6. So the 

number of points in {x, x~,-.- ,  x, tx)} which are not matched is at most 2t6/a = 
2nF6/a. 

Let m = min{i (x) , i (y) ,  n}. By (5) we have 

Im - n l < n 6 / a ,  

(6) [m - i(x )l < 2n6/a, 

I m - i ( y ) ] < 2 n 6 / a .  

So at least m - 2t6/a points of {x, x , -  �9 -, x,,} are matched. The same way at least 

m - 2 t 6 / a  points of {y, y l , . . - , y , , }  are matched. By (6) at least m - 2 t 6 / a -  
2n6/a points of {x,. . . ,  Xr,} are matched with some points of {y , . - . ,  y,,}. 

By (6) m > n - n 6 / a  so at least n - n 6 / a - 2 n f f 6 / a - 2 n 6 / a  points of 

{x, x~, . . - ,  xo} are 6-matched with some points of {y, y~,- . . ,  y.}. This says that 

f .  (w, (x), w, (y)) < K6 where K = (3 + 2F)/a. So given e > 0 we chose 6 > 0 s.t. 

K6 < e. Then for n > No(6), f.  (w. (x), w~ (y)) < ~, x, y E Xo(6). �9 

3. We are going to prove that h, satisfies the condition of Lemma 1. 
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For a u-cylinder P let Ov(A~(P)) be the 3,-neighborhood of the boundary 

OA~(P) in W'(AI(P)).  Let O = O ~ ( P )  be the u-cylinder with AI(O)  = 

O~(A,(P)) and Az (Q)C  W'(Az(P)). Let A~(a )=  U j , ~ O ~ ( P ) .  Let 8 > 0  be 

fixed and 3' > 0  be so small that / x ( A , ( a ) ) <  8/2. 

We use unique ergodicity of h, to get N = N ( 8 ) >  0 s.t. 

max l (C) /N  < 8 and 
CE~ 

(7) if t > N and x E M then the relative Lebesgue measure of the 

set Av(a)  on I,(x) is at most & 

Let 3" = inf{d, (x, y): x ~ aA, y 6 A fq aP, A E rto,~p~, P ~ a} > 0 where d, is 

the metric on leaves of Ws. 

Let 0 < 8 ' <  3"/2 be s.t. if A C W ~, diam~A < 8', x ~ A and P is a u-cylinder 

with A,(P) = A and [x, hu(x)] E sop then 

diam, B < 3"/2 for any B E rip, 

(8) I I ( C ' ) -  l(C")l < 8 for any C', C"C P, C'  L C" and in particular 

I I ( C ) - N I < 8  f o r any  C6sCp. 

Let t => N and s = s(t) be s.t. A' �9 N = t (see (1)). 

The following lemma contains the main point of the proof. 

LEMMA 2 (BASIC). Let 8 > 0 be given and let N = N(8)  and 8' = 8'(8) be as 
above. Let B C M and diam B < 8'. Then for any u, v E B and any t >= N, L ( T,u ) 

and L(T,v)  are lOS-a-matchable. 

PROOF. We consider the orbit intervals Iu(u)  and IN(v). Let I(u),  I (v)  be 

the maximal s-isomorphic subintervals of IN (u), IN (v). It follows from (8) that 

I I ( I ( u ) ) -  N I < 48, 

(9) I I ( I ( v ) ) -  N I < 48. 

Let u, = Tsu and t (u,)  = T,I(u). I(u,)  and I(vs) are s-isomorphic and it follows 

from (1) and (9) that 

I I ( l ( u , ) ) -  t J < 48 .  t, 

(10) I I ( I ( v , ) ) -  t I < 48.  t. 

= U,=oZ(u,),  I ( v , ) =  Uy=0Jj(v, ) be the above decompositions into Let I (u , )  P 

a -named  intervals. 
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Let some [x', x"] C I(us) be s-isomorphic to some [y', y"] C I(vs). x' ,  y '  are in 

the same leaf of W s and so are x", Since T contracts W ~ it follows from (8) y lt. 

that d, (x', y'), d, (x", y " ) <  3/'/2. By definition of 3" we have 

(11) x'  and y '  have different a-names only if x ', y '  ~ A, (a).  

Let L ( u , ) =  [x',x';], J~(vs) = [Y;, YT] and let 

J(u~) = {Z (u,): x', ~ a ,  (a)  or y (x',) e~ a ,  (a), [x ~, x',] ~ [y ~, y (x ;)]}, 

](v , )  = {Jj (vs): y; ~ A , ( a )  or x(y~) ~ A, (a),  [y;, y~] ~ [Xo, x(y~)]}. 

By (7) and (10) the total relative Lebesgue measure of I,.Jj(u~) and of I,.Jj(v~) on 

L(u,) and L(v,) is at least 1-58. 

It follows from (11) that J(u , )  and J(vs) have the same number of intervals and 

if we label them in the increasing order 

J(u , )  = {Fl(u , ) , . . . ,  F~ (us)}, J(v~) = {F,(v,) , . . - ,  F,(v~)} 

then F~ (u,) and F~ (v~) will have equal a -names. This completes the proof. �9 

Let e > 0  be fixed and ~ = $ ( e ) =  e/10. Let to = o) (8)={B1, . - . ,B ,}  be a 

finite partition of M into sets of positive /~-measure with diamB~ <8 ' (8 ) ,  

i = 1, r. We get from Lemma 2 

COROLLARY. Given e > 0 there is N = N ( e  ) > 0 s.t. for any t >-_ N there is-a 
partition to, = to,(e) = {B'~, . . . ,  B',}, B ~ = T~B,, B, ~ to(g), i = 1, r s.t. if u, v E B ~ 
then L ( u )  and L (v )  are e -a-matchable .  Since T, preserves/z,/x(B'~) =/z(B,)  for 
a l l t>=N,  i = l , r .  

The following definition is quite analogical to B. Weiss' (e, M, c)-matchability 

[301. 

DEFINITION 3. /, (U) and L (v) are called (0, e, M, c)-a-matchable if there are 

disjoint subintervals 

S ~ ( u ) < S z ( u ) < . . . < S k ( u ) ,  S , ( u ) C I , ( u ) ,  i = l , k ,  

S,(v)<S2(v)<.. .<Sk(v),  S,(v)Ct,(v), 

and a subset J C{1 ,2 , . . - , k}  s.t. 

(1) l (U~=lS,(u)) / t ,  l(I,3~=iS,(v))/t >1  - 0, 

(2) l ( IJ ,~ jS , (u) ) / t ,  l(I, .J,~jS,(v))/t  >= c, 

(3) if i E J  then S,(u) and S,(v) are e-a-matchable,  

(4) if i ~ J then l(S, (u)), l(S, (v)) >= M. 
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We repeat  B. Weiss' proposition 7.5 in [30] (see also proposition 1 in [14] by 

Katok and Sataev) to get 

LEMMA 3. Let  e > 0  be given and c = c (e  ) = min{kt(B,),B, ~ to (e )}>0 .  For 

any 0 > 0 and M > 0 there is no = n0(e, M, 0) s.t. i f  t >-_ no then for any u, v ~ M 

I, (u)  and  I, (v )  are (O, e, M,  c ~2)-a-matchable.  

PROOF. Take  8 = tS(e) = e / L  and N = N(~).  Let to > max {N, M }  and to,o = 

{B '~ - - - ,  B'~ /z (B~~ c > 0 ,  i = 1, r. Denote  h = h~. We use the unique er- 

godicity of h to get n > 0 s.t. if x E M then the frequency of each B~ o, i = 1, r in 

the sequence {x, h x , . . . . , h n x }  is at least 3c/4.  Let no>to/O be so big that 

n / n o < O / 2 .  Let t>-_no. Take I , ( u )  and I , (v) .  L ( u ) = I ~ ( u ) U I ~ ( u ~ ) U  . . . .  

S~ (u )U S 2 ( u ) U .  . . U Sp(u)  where l ( S , ) =  to, i = l , 2 , .  . . ,p  - 1 ,  l(Sp(u))<= to. 

Write undernea th / ,  (u) the shifts L ( v ), h L ( v ), h ~ I, ( v ), . . ., h "L ( v ). Under  every 

point of the form u,~,, i = 0 , 1 , 2 , - . . , p - 1  are written the points V~,o; 

hv,~,. �9 h "v~. By our choice of n in each such column the frequency of sets B~ ~ 

i = l ~ i s  at least 3c/4.  If a point w of the column belongs to B~(u~,) we call such 

an occurrence a desirable event, i = 1,p. In this case h,(u,~) and I~o(w) are 

e -a -ma tchab le .  

The frequency of the desirable event in each column is at least 3c/4  and using 

simple arguments  (see for instance lemma 1 in [14]) we conclude that there is 

0 _-< s -< n s.t. on the shift h ' L ( v )  the frequency of desirable intervals of length to 

is at least 3c/4.  Since t o > M  this obviously gives a ( O , e , M , c / 2 ) - a - m a t c h  

between L (u) and L (v). �9 

COROLLARIES. (1) (See B. Weiss' proposition 7.4 in [30].) Let  e > 0 be given 

and  c ~ = c ( e ) / 2 .  Let  c z = c ~ + ~ c z ( 1 - c ~ ) .  For any 0 > 0  and M > 0  there is 

nj = n~( 8, e, M )  s.t. i l l  >= n~ then for any u, v E M I, ( u ) and  L ( v ) are (0, e, M,  c2)- 

a -matchable.  

PROOF. Let 0~ < 0/2 be so small that c , ( 1 -  c ~ -  0 1 ) > ) c i ( 1 -  cz). Take  no = 

no(e, M,  8~) as in Lemma  3 and let n, = no(e, no, 0~). One can see that if t -> n~ 

then for any u, v E M,  L ( u )  and I , ( v )  are (0, e, M, c2)-a-matchable.  �9 

(2) Let  e > 0  be given and  ck+~ = c~ +�89 Cl = C(e)/2. Then for any 

0 > 0 ,  M > 0  there is n~ = n k ( e , M , O  ) s.t. i f  t>=n~'then for any u, v E M,  I , (u ) 

and  I, (v ) are (0, e, M, ck ) -a-matchable .  

This follows from (1) by induction on k. 

(3) Since ck -~ 1 k --~ ~ and  0 is arbitrary we get from (2): given e > 0 there is 

to = to(e) s.t. if t >= to then for any u, v ~ M,  L (u ) and L (v ) are e -a -ma tchab le .  
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PROOF OF THEOREM 1. (3) says that h, satisfies the condition of Lemma 1. By 

this lemma/3 is LB for (X, $, v). In the same way we may construct an increasing 

sequence of partitions /3 < / 3 1 < / 3 2 < . . "  s.t. each /3, is LB and V,/3, is the 
partition of X into points. This implies that $ is LB (see corollary 4.8 and 

theorems 6.5, 6.7 in [30]). Since h, and H, are uniquely ergodic [6] ~k is a 
cross-section for both of the flows. This implies that h, and/4, are LB. �9 
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